

Tetrahedron Letters 43 (2002) 1519-1522

Highly chemoselective Pummerer reactions of sulfinyldiacetic acid derivative

Yoshimitsu Nagao,* Satoshi Miyamoto, Kazuhiko Hayashi, Ado Mihira and Shigeki Sano

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan Received 5 December 2001; accepted 28 December 2001

Abstract—Sulfinyldiacetic acid amide ester *rac*-1 was efficiently synthesized starting from thiodiacetic acid 4. Treatment of *rac*-1 with Ac₂O and TMSOTf in CH₂Cl₂ at -40°C gave chemoselectively amide site α -acetoxy sulfide *rac*-2 in a ratio (91:9) of *rac*-2 and *rac*-3 and in a 90% total yield. Similar treatment of 1 with Ac₂O and TMSOTf in DMF at room temperature furnished ester site α -acetoxy sulfide *rac*-3 in a highly chemoselective manner (*rac*-2:*rac*-3=3:97) and in a 92% total yield. © 2002 Elsevier Science Ltd. All rights reserved.

Pummerer reactions,¹ providing various α -substituted sulfides from the corresponding sulfoxides, have been attractive in regard to their value in the synthesis of natural products and biologically active compounds,² and in regard to their reaction mechanisms.³ Thus, numerous Pummerer-type reactions have been reported.¹⁻³ The Pummerer reaction of dicarboxylic acid derivatives **A** bearing a sulfinyl group must be interested in the viewpoint of the development of new enzyme inhibitors; α -acetoxy sulfides **B** or **C** having rationally designed D- or L-amino acid amide group(s) (vide infra).

In general, regio- and chemoselective Pummerer reactions of the sulfoxides having two kinds of α -methylene groups can be performed at the more acidic methylene site with an electron-withdrawing group (EWG), as illustrated in Eq. (1).⁴

However, there have been a few reports of the Pummerer-type reaction of the sulfoxide having similarly acidic two α -methylene groups such as CH₂CO₂R and CH₂CONHR ones.⁵ We herein describe highly chemoselective Pummerer reactions of sulfinyldiacetic acid amide ester *rac*-1 as a model for A giving amide site α -acetoxy sulfide *rac*-2 or ester site α -acetoxy sulfide *rac*-3 each having high selectivity, as shown in Scheme 1 and Tables 1–3.

The synthesis of *rac*-1 was efficiently performed by exploiting the synthetic route represented in Scheme 2. Thiodiacetic acid 4 was treated with Ac₂O (2.0 mol equiv.) under reflux for 3 h to give anhydride 5 [mp 92–95°C (AcOEt)] in an 87% yield. The compound 5 was allowed to react with aminodiphenylmethane (1.1 mol equiv.) in the presence of pyridine (0.1 mol equiv.) in Et₂O under reflux to give mono amide 6 [mp 115–117°C (AcOEt)] in a quantitative yield. After esterifica-

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(02)00051-5

Keywords: Pummerer reactions; sulfoxides; chemoselectivity; Lewis acid; solvents and solvent effects.

^{*} Corresponding author. Tel.: +81-88-633-7271; fax: +81-88-633-9503; e-mail: ynagao@ph2.tokushima-u.ac.jp

Table 1. Investigation of Lewis acids in the Pummerer reaction of rac-1^a

Entry	Lewis acid	Time	Yield (%) ^b	Ratio ^c
				rac-2 : rac-3
1	BF ₃ ·OEt ₂	1 h	97	76 : 24
2	TMSOTf	5 min	90	76 : 24
3	TBDMSOTf	5 min	63	80 : 20
4	$Zn(OTf)_2$	48 h	18	16 : 84
5	TiCl ₄	16 h	d	_
6	BBr ₃	3 h	d	-

^a All reactions with the use of Ac₂O (5 mol equiv.) and Lewis acid (3 mol equiv.) were carried out in CH₂Cl₂ at room temperature.

^b Total yield of *rac*-2 and *rac*-3.

^c Determined by ¹H NMR (200 MHz, CDCl₃) analysis.

^d Reduction product 7 was obtained in 63% (entry 5) or 12% (entry 6) yield.

tion of **6** with MeOH in the presence of a catalytic amount of H_2SO_4 under reflux, the resultant methyl ester **7** [mp 55–56°C (*n*-hexane–CHCl₃)] (quantitative yield) was submitted to oxidation with NaIO₄ (1.5 mol equiv.) in an aqueous MeOH solution at room temperature to afford *rac*-**1** [mp 112–113°C (*n*-hexane–CHCl₃)] in a 99% yield.

Scheme 2. (a) Ac_2O (2.0 mol equiv.) reflux, 3 h; (b) Ph_2CHNH_2 (1.1 mol equiv.), pyridine (0.1 mol equiv.), Et_2O , reflux, 45 min; (c) H_2SO_4 (cat.) MeOH, reflux, 1 h; (d) $NaIO_4$ (1.5 mol equiv.), MeOH- H_2O , rt, 5 h.

In order to determine a suitable Lewis acid, we first examined the Pummerer reactions of rac-1 by using Ac₂O (5 mol equiv.) and several Lewis acids (3 mol equiv.) in CH₂Cl₂ at room temperature. All experimental results are summarized in Table 1. The desired chemoselective reactions proceeded to give rac-2 and rac-3 in ratios of 76:24 (BF₃·OEt₂ and TMSOTf), 80:20 (TBDMSOTf) and 16:84 [Zn(OTf)₂], respectively (entries 1–4 in Table 1). In the cases using TiCl₄ and BBr₃, a reduction product 7 was obtained in 63 and 12% yields (entries 5 and 6 in Table 1).⁶ Among the results described above, the reaction conditions employing TMSOTf ⁷ intrigued us for further investigation toward the development of highly chemoselective Pummerer reactions.

Subsequently, an effect of the solvent on the Pummerer reactions of *rac*-1 was examined by using Ac₂O (5 mol equiv.) and TMSOTf (3 mol equiv.) in the indicated solvents (Table 2) at room temperature. All of the reactions were carried out for 5 min to give *rac*-2 and *rac*-3 with good to high chemoselectivities in ratios of 76:24 (CH₂Cl₂ and ClCH₂CH₂Cl), 67:33 (Et₂O), 32:68 (AcOEt), 2:98 (MeCN) and 6:94 (DMF), respectively

(entries 1–6 in Table 2). Surprisingly, the direction of chemoselectivity in the aprotic dipolar solvents ('electron-donating solvents')⁸ involving an amide carbonyl group or a cyano group is reverse to that in CH_2Cl_2 , $ClCH_2CH_2Cl$ or Et_2O .

Finally, an effect of the reaction temperature on the Pummerer reactions of rac-1 was investigated by using Ac₂O (5 mol equiv.) and TMSOTf (3 mol equiv.) in CH₂Cl₂ or DMF at the indicated temperatures for the arbitrary reaction times, as shown in Table 3. In CH₂Cl₂, a clear trend toward higher chemoselectivity for production of rac-2 was observed to be dependent on a lower reaction temperature (entries 1–5 in Table 3). In DMF, a remarkably high chemoselectivity for yielding rac-3 was recognized even at room temperature (entry 6).

Consequently, we have achieved the chemoselective Pummerer reactions of *rac*-1 to obtain the amide site α -acetoxy sulfide *rac*-2⁹ in a ratio (91:9) of *rac*-2 and *rac*-3 and in a 90% total yield but also the ester site α -acetoxy sulfide *rac*-3⁹ in a highly chemoselective manner (*rac*-2:*rac*-3=3:97) and in a 92% total yield.

This complementary chemoselective Pummerer reaction can be rationalized in terms of an affinity of TMSOTf and certain other Lewis acids except for $Zn(OTf)_2$ with

Table 2. Effect of the solvent on the Pummerer reaction of rac-1 using TMSOTf^a

Entry	Solvent	Yield (%) ^b	Ratio ^c			
			rac-2	:	rac-3	
1	CH ₂ Cl ₂	90	76	:	24	
2	ClCH ₂ CH ₂ Cl	67	76	:	24	
3	Et ₂ O	63	67	:	33	
4	AcOEt	46	32	:	68	
5	MeCN	41	2	:	98	
6	DMF	12 ^d	6	:	94	

^a All reactions with the use of Ac_2O (5 mol equiv.) and TMSOTf (3 mol equiv.) were carried out at room temperature for 5 min.

^b Total yield of *rac*-2 and *rac*-3.

^c Determined by ¹H NMR (200 MHz, CDCl₃) analysis.

^d Rac-1 was obtained in 77% recovery.

Table 3. Effect of the reaction temperature on the Pummerer reaction of rac-1 using TMSOTf^a

Entry	Solvent	Temp (°C)	Time	Yield (%) ^b	Ratio ^c			
					rac-2	:	rac-3	
1	CH ₂ Cl ₂	Reflux	2 min	60	60	:	40	-
2	CH_2Cl_2	Rt	5 min	90	76	:	24	
3	CH_2Cl_2	0	5 min	95	82	:	18	
4	CH ₂ Cl ₂	-20	24 h	94	88	:	12	
5	CH ₂ Cl ₂	-40	24 h	90	91	:	9	
6	DMF	Rt	3 h	92	3	:	97	
7	DMF	0	12 h	41 ^d	4	:	96	
8	DMF	-40	30 h	_e		_		

^a All reactions with the use of Ac₂O (5 mol equiv.) and Lewis acid (3 mol equiv.) were carried out in CH₂Cl₂ or DMF.

^b Total yield of *rac*-2 and *rac*-3.

^c Determined by ¹H NMR (200 MHz, CDCl₃) analysis.

^d Rac-1 was obtained in 33% recovery.

e No reaction.

Scheme 3.

Figure 1. Design of new enzyme inhibitors.

the amide carbonyl and cyano groups. In CH_2Cl_2 , TMSOTf, TBDMSOTf and $BF_3 \cdot OEt_2$ may be predominantly coordinated by the amide carbonyl group of *rac*-1 causing a more acidic outcome of the methylene protons of $CH_2CO_2Me.^{10}$ In DMF and MeCN, their amide carbonyl and cyano groups may exclusively coordinate to TMSOTf, TBDMSOTf and $BF_3 \cdot OEt_2$, and thus a higher acidic property of the methylene protons of CH_2CO_2Me than that of the methylene protons of $CH_2CO_1MEHPh_2$ in *rac*-1 must furnish the high chemoselectivity to give *rac*-3.

The sutructures of *rac*-2 and *rac*-3 were explicitly determined by their alkaline hydrolyses, as shown in Scheme 3. Treatment of *rac*-2 or *rac*-3 with 1N NaOH in MeOH gave each characteristic product, glyoxylic amide 8 (77% yield) or mercaptoacetic amide 9 (69% yield). These particular reactions seem to be useful for a molecular design of new suicide substrates as the esterase and protease inhibitors, as illustrated in Fig. $1.^{11}$

Acknowledgements

This work was in part supported by a Grant-in-Aid for Scientific Research (B)(2)(No. 12470482) from Japan Society for the Promotion of Science.

References

- (a) Pummerer, R. Chem. Ber. 1909, 42, 2282; (b) Pummerer, R. Chem. Ber. 1910, 43, 1401; (c) Horner, L.; Kaiser, P. Justus Liebigs Ann. Chem. 1959, 626, 19; (d) Horner, L. Justus Liebigs Ann. Chem. 1960, 631, 198; (e) Numata, T.; Oae, S. Yuki Gosei Kagaku Kyokaishi 1977, 35, 726; (f) Kita, Y.; Shibata, N. Synlett 1996, 289; (g) Volonterio, A.; Zanda, M.; Bravo, P.; Fronza, G.; Cavicchio, G.; Crucianelli, M. J. Org. Chem. 1997, 62, 8031.
- (a) Ishibashi, H.; Ikeda, M. Yuki Gosei Kagaku Kyokaishi 1989, 47, 330; (b) De Lucchi, O.; Miotti, U.; Modena, G. Org. React. 1991, 40, 157; (c) Kita, Y.; Shibata, N.; Kawano, N.; Tohjo, T.; Fujimori, C.; Ohishi, H. J. Am. Chem. Soc. 1994, 116, 5116; (d) Padwa, A.; Gunn, D. E., Jr.; Osterhout, M. H. Synthesis 1997, 1353; (e) Jousse, C.; Desmaële, D. Eur. J. Org. Chem. 1999, 909; (f) Bennasar, M.-L.; Zulaica, E.; Ramírez, A.; Bosch, J. Tetrahedron 1999, 55, 3117.
- (a) Russell, G. A.; Mikol, G. J. In *Mechanisms of Molecular Migrations*; Thyagarajan, B. S., Ed.; Wiley-Interscience: New York, 1968; Vol. 1, p. 157; (b) Oae, S.; Numata, T.; Yoshimura, T. In *The Chemistry of the Sulphonium Group*, *Part* 2; Stirling, C. J. M.; Patai, S., Eds.; John Wiley & Sons: New York, 1981; p. 571.
- (a) Oae, S.; Kitao, T.; Kawamura, S. *Tetrahedron* 1963, 19, 1783; (b) Johnson, C. R.; Sharp, J. C.; Phillips, W. G. *Tetrahedron Lett.* 1967, 8, 5299; (c) Parham, W. E.; Edwards, L. D. J. Org. Chem. 1968, 33, 4150; (d) Russell, G. A.; Sabourin, E. T. J. Org. Chem. 1969, 34, 2336; (e) Davenport, D. A; Moss, D. B.; Rhodes, J. E.; Walsh, J.

A. J. Org. Chem. 1969, 34, 3353; (f) Jones, D. N.; Helmy,
E.; Whitehouse, R. D. J. Chem. Soc., Perkin Trans. 1
1972, 1329; (g) Numata, T.; Oae, S. Tetrahedron Lett.
1977, 18, 1337.

- Ishibashi, H.; Okada, M.; Akiyama, A.; Nomura, K.; Ikeda, M. J. Heterocyclic Chem. 1986, 23, 1163.
- (a) Madesclaire, M. *Tetrahedron* 1988, 21, 6537; (b) Shimizu, M.; Shibuya, K.; Hayakawa, R. *Synlett* 2000, 1437.
- Procopius, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A. J. Org. Chem. 1998, 63, 2342.
- 8. Gutmann, V. Electrochim. Acta 1976, 21, 661.
- Pure compound *rac*-2 or *rac*-3 was obtained by recrystallization of each crude solid in *n*-hexane–CHCl₃. *rac*-2: colorless needles; mp 111–112°C; IR (KBr) 1746, 1657, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.17 (s, 3H), 3.39 (d, *J*=13.4 Hz, 1H), 3.66 (d, *J*=13.4 Hz, 1H), 3.69 (s, 3H), 6.24 (d, *J*=6.3 Hz, 1H), 6.26 (s, 1H), 7.26–7.34

(m, 11H). Anal. calcd for $C_{20}H_{21}NO_5S$: C, 62.00; H, 5.46; N, 3.62. Found: C, 61.88; H, 5.51; N, 3.51. *rac*-**3**: colorless crystals; mp 94–96°C; IR (KBr) 1746, 1640, 699 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.88 (s, 3H), 3.45 (d, J=16.1 Hz, 1H), 3.56 (d, J=16.1 Hz, 1H), 3.67 (s, 3H), 5.94 (s, 1H), 6.26 (d, J=8.1 Hz, 1H), 7.28–7.31 (m, 11H); Anal. calcd for $C_{20}H_{21}NO_5S$: C, 62.00; H, 5.46; N, 3.62. Found: C, 61.93; H, 5.61; N, 3.56.

- 10. In the ¹H NMR (300 MHz) spectrum analysis of a mixture of DMF (0.1 mmol), MeCO₂Me (0.1 mmol) and TMSOTf (0.1 mmol) in CDCl₃, downfield shifts of CH₃ ($\Delta\delta$ +0.32), CH₃ ($\Delta\delta$ +0.49) and CHO ($\Delta\delta$ +0.53) signals of DMF were recognized in comparison with those of a mixture of DMF and MeCO₂Me without TMSOTf. However, significant downfield shifts of CH₃O ($\Delta\delta$ +0.00) and CH₃CO ($\Delta\delta$ +0.00) signals of MeCO₂Me were not observed in the same manner as described above.
- 11. Otto, H.-H.; Schirmeister, T. Chem. Rev. 1997, 97, 133.